HawkEye 360 booth at new space conference in August 2018. HawkEye 360 booth at new space conference in August 2018. Credit: Shen Ge
With the abundance of new small satellite companies, HawkEye 360 stands out as one that detects radio wavelengths instead of visible light (what your eyes can see). HawkEye 360 plans to create a constellation of at least eighteen satellites in clusters of three that will map and analyze RF signals coming from communications and transportation services. Its applications include identifying transportation activity and logistics tracking, emergency response and rescue efforts, communications interference detection, and spectrum mapping and use. HawkEye 360 has gathered an impressive team for their initial Pathfinder mission including a university research laboratory, an asteroid mining company and a space communications payload company. University of Toronto Institute for Aerospace Studies (UTIAS) has a specialty lab called Space Flight Laboratory (SFL) which has developed and refined microspace technologies for 22 smallsats in the last two decades. Though UTIAS-SFL has been contracted to develop the satellites using the Nemo-V1 satellite bus, the lab is actually a subcontractor for asteroid mining company Deep Space Industries (DSI). In addition to being a prime contractor, Deep Space Industries (DSI) is also providing an innovative water-based propulsion system. Meanwhile, HawkEye 360 has collaborated with GomSpace on the RF payload.

[caption id="attachment_42" align="alignleft" width="300"]SCIM will journey to Mars and perform a high-speed atmospheric pass collecting Martian dust particles. With its precious cargo onboard, SCIM will return the samples to Earth for detailed analysis in advanced technology laboratories. Source: BoldlyGo Institute In 2020, SCIM will embark on a two year journey to Mars to perform a high-speed atmospheric pass collecting tiny dust particles. SCIM will take another half year to return the samples to Earth for detailed analysis. Source: BoldlyGo Institute[/caption]

A nonprofit corporation called BoldlyGo Institute (BGI) is developing a Mars Sample Return mission called the Sample Collection to Investigate Mars (SCIM) which will return the first samples of Martian materials back to Earth. The project is at the preliminary design stage and the goal is ambitious. With a launch date of July 26, 2020, SCIM will journey through space for two years. When it reaches Mars, it will swoop down and collect the dust particles from the Martian atmosphere below 40 km. The SCIM has an aerodynamic aeroshell allowing it to rapidly pass through the atmosphere without being captured by Mars's gravity. The sample capture mechanism for the Mars Sample Return Mission is similar to the successful collection system for the Stardust mission which used aerogel to capture dust particles. After collecting thousands of particles, the spacecraft will leave Mars on August 3, 2022 and return directly to Earth by February 1, 2023 where the sterilized samples will descend by parachutes to the ground.

Sample return offers advantages over the current and past robotic missions to Mars where samples have been only analyzed on Mars. Earth-based lab instruments are much more sophisticated than what can be packed into a Mars rover or lander allowing much greater detailed analysis. Furthermore, there is no time limit for analysis; as more advanced instruments are developed, they can be applied on curated samples. Lastly and perhaps speaking most intriguingly of BoldlyGo Institute's philosophy, participation can involve hundreds of scientists and students--many of whom may not be traditionally involved in the Mars science community. Interested in more of my posts and other writings outside of Impact Hound? Follow me on Twitter: @shenge86

Powered by WordPress Popup